Assessment of the Hip and Knee Flexion Contractures in Cerebral Palsy Patients with Crouch Gait

Çömelme Pozisyonunda Yürüyen Beyin Felçli Hastalarda Kalça ve Dizdeki Fleksiyon Kontraktürlerinin Değerlendirilmesi

Fuat Bilgili¹, Yener Temelli², N. Ekin Akalan³

¹Department of Orthopaedics and Traumatology, Taksim Training and Research Hospital, İstanbul, Turkey
²Department of Orthopaedics and Traumatology, Gait Analysis Laboratory, Faculty of Medicine, İstanbul University, İstanbul, Turkey
³Division of Physiotherapy and Rehabilitation, Faculty of Health Science, İstanbul University, İstanbul, Turkey

ABSTRACT

The knee is the most affected joint in children with cerebral palsy. Flexion contracture of the knee is the cause of the crouch gait pattern, instability in stance phase of gait, and difficulties during standing and sitting, and other daily living activities. Hip flexion contracture in crouch gait is mostly compensation of the knee flexion contracture and ankle equines. The psoas muscle is the primary reason for the hip flexion contracture and is known to be associated with increased anterior pelvic tilt, crouching gait, hip instability and lumbar lordosis. Children with cerebral palsy may even give up walking due to the high energy demand in the adult period. The purpose of this article is to review the causes of the knee and hip flexion contractures, clinical evaluations, and treatment principles in children with cerebral palsy. The biomechanical reasons of knee and hip flexion deformity are discussed in detail in the light of previous studies and gait analysis data. (JAREM 2012; 2: 33-7)

Key Words: Cerebral palsy, child, contracture, gait, hip joint, knee joint, muscle, skeletal, tendons

ÖZET


Anahtar Sözcüklər: Beyin felci, çocuk, contractür, yürüyüş, kalça eklemi, diz eklemi, kas, iskelet, tendon

INTRODUCTION

In the literature, crouch gait is reported in 69% of the general CP population, being 74% in diparetic and 88% in quadriparetic patients (1).

Delay in walking and hip flexion cause high femoral anteverision in children with CP. With increased anteverision, the child walks with internal rotation and pelvic tilt increases. Increased femoral anteverision is associated with kinetic and kinematic changes that result in crouch posture. Normally, ground reaction force (GRF) passes from the center of the hip and knee while standing. In children with crouch gait, the GRF passes from the anterior of the hip and posterior of the knee because of hip flexor tightness. Lumbar lordosis is increased. To compensate for lumbar lordosis, the superior part of the trunk moves back and the knee is flexed. This crouching posture at the hip and knee leads to knee flexion contracture over time (2). Therefore, prior to initiating treatment for the crouch gait in children with CP, the appropriate therapeutic strategy should be determined through a qualified assessment of the flexion contracture in the hip and knee.

The aim of this review article is to investigate the reasons of hip and knee flexion contracture in children with CP, analyze the compensatory alterations that may be associated with deformities and to determine most appropriate treatment method for these patient.

KNEE FLEXION CONTRACTURE

Hamstring spasticity is the most common problem in cerebral palsy (CP). If left untreated, it results in knee flexion contractures (3). The quadriceps muscle works excessively as a result of knee flexion contracture. This increases the load on several joints, especially on the patellofemoral joint and becomes an important problem, causing anterior knee pain and stress fractures of the patella and tibial tubercle (2, 4, 5). Knee flexion contracture may develop (i) after hip flexion contracture and increased anterior pelvic tilt, or due to (ii) hamstring spasticity or contracture, (iii) gastrocnemius tightness, (iv) triceps surae weakness following surgery, or (v) posterior capsule contracture that develops over time (6-10).
i) Hamstring spasticity or contractures
Medial and lateral hamstrings attached to the proximal tibi are knee flexors and hip extensors (11). Three-dimensional gait analysis studies showed prolonged medial hamstring muscle activity resulting in increased hip extensor muscle strength (9). It has long been believed that children with crouch gait have hamstring spasticity and this has been the focus of several studies. Many have shown that hamstring lengths are usually normal in these children (2, 6, 9, 12). Even though the length of the hamstring is normal, it appears contracted when pelvic tilt increases. hamstring release in this condition will further increase the pelvic tilt. Thus, the hamstring release operation should be decided after clinical tests and three-dimensional gait analysis which provides dynamic length measurement of hamstring muscles (2, 9, 12, 13).

ii) Knee flexion contracture following hip flexion contracture and increased anterior pelvic tilt
Anterior pelvic tilt and knee flexion are usually increased in children with CP while standing or during the stance phase of gait (2, 7, 9, 13). Normally, ground reaction force (GRF) passes from the center of the hip and knee while standing. In children with crouch gait, the GRF passes from the anterior of the hip and posterior of the knee because of hip flexor tightness. Lumbar lordosis is increased. To compensate for the lumbar lordosis, the superior part of the trunk moves back and the knee is flexed (2). This crouching posture at the hip and knee leads to knee flexion contracture over time. Increased knee flexion associated with increased anterior pelvic tilt contributes to knee flexion contracture in time. As anterior pelvic tilt continues to increase, knee flexion during standing and walking will increase. Usually this might be perceived as an increase in knee flexor tightness clinically, necessitating hamstring lengthening.

iii) Gastrocnemius tension
The gastrocnemius muscle is the primary ankle plantar flexor and knee flexor (10). As knee flexion increases, flexion moment of the gastrocnemius at the knee gradually increases. There is selective motor deficit in the gastrocnemius muscle of children with CP and spasticity dominates. For this reason, it is usually stretched, causing early heel rise, toe walking, and heel valgus during the stance phase of gait (2). Gastrocnemius causes toe walking distally and this forms an extra proximal moment pulling the knee to flexion (10). This moment directly affects acceleration of the knee to flexion at the end of the stance phase and contributes to maximum flexion of the knee during the swing phase (14). Gastrocnemius-soleus complex is the most important part of plantar flexion-knee extension couple which provides adequate knee extension during the stance phase (2). While gastrocnemius muscle stretch occurring in the proximal contributes to increased knee flexion, it loses its important role in extension during the stance phase and becomes a knee flexor (15).

iv) Postoperative triceps surae weakness
Soleus generates 40% to 50% of the total force needed to straighten the body during the first one-third of the gait cycle (2). This activity enables knee flexion by producing a moment against the GRF passing from the anterior of the ankle. This plantar flexor effect on the ankle and extensor effect on the knee is called plantar flexion-knee extension couple. Thus, extra muscle activation for knee extension during the stance phase is eliminated. In spas-
ing the difficulties in clinical measurement of dynamic hamstring length, evaluation of the patient in gait analysis laboratory is necessary (10). Clinically, gastrocnemius-soleus tightness should be assessed separately as with the hamstring muscles, because the soleus muscle is usually normal or extended in most CP patients (7). The primary role of the soleus is to control the forward movement of the tibia during the mid-stance phase, thereby enabling knee extension. Radical soleus stretching exercises and surgical procedures such as Achilles tendon release that cause excessive lengthening of the soleus weakens the muscle, resulting in increased knee flexion during the stance phase and knee flexion contracture. The Silfverskiold test performed under anesthesia is the most appropriate method to identify gastrocnemius contracture and excessive soleus length. However, the positioning of the mid and front segments of the feet should not interfere with the test. Thus, the subtalar joint is brought to as neutral or varus position as possible during the test (10).

For children with femoral anteversion and tibial external torsion, application for one year of elastic derator-band in physiotherapy causes increase in walking distance and walking velocity with reduction in energy expenditure. However, the long-term use is still controversial (18). If orthopedic procedures are considered, correction of rotational deformities is the first line of treatment for crouch posture in CP patients (2). Clinically, video-based observational gait analysis (VBOGA) may help understand the influence of knee flexion contracture on walking. The clinical application of this method can be made by a single specialist experienced in VBOGA. It has been shown that observation of the gait in slow motion and evaluation of the gait in fewer phases (dividing the stance phase to three parts only) with a simple evaluation form increase reliability (19, 20). Even though detailed and time consuming, Perry's observational gait analysis evaluation form developed in 1992 is still used for gait assessment (4, 20).

ii) Computerized gait analysis
In CP patients with knee contracture, kinetic analysis of gait shows increased knee flexion in the stance phase and, despite minimal movement of the knee in the swing phase, an increase in the knee extensor moment during the loading phase, and increased quadriceps activity, depending on the severity of contracture. This is because the extensor muscles are trying to bring the knee to extension (2). Knee flexion contracture is not examined in the laboratory solely in the knee context, and investigation of its effects on other joints is helpful for the treatment. In spastic diplegia and quadriplegia, usually crouch gait is seen. Foot dorsiflexion and knee flexion are increased due to soleus weakness and/or femoral anteversion and knee extensor moment continuously increase. EMG shows increased hip and knee extensor muscle activity and high energy consumption (2). With the addition of ankle plantar flexion during the stance phase to this picture, the knee is flexed at the beginning of the stance phase.

Management of knee flexion deformities
The goals of treatment should be as follows:

1. Decrease knee flexion during gait,
2. Increase stride length,
3. Decrease patellofemoral joint load, and
4. Increase strength (durability).

In principle, the pelvis, hip, knee, and ankle should be assessed as a whole.

1. Rotational deformities (femoral anteversion, tibial torsion, varus-valgus-adductus deformities of the feet, hip subluxation, etc.) should be corrected.
2. Shortened muscles should be lengthened (care should be given to biarticular muscles).
3. Elongated muscles should be shortened.
4. Fixed joint contractures should be corrected.
5. Ground reaction orthosis may be needed.

In mild knee flexion contractures, immobilizer, angle adjustable KAFO, and botulinum toxin A injection can be used in children younger than 5 years age whose popliteal angle is smaller than 60 degrees. Botulinum toxin A injection should be used in carefully selected patients. Corry et al. (21) showed that anterior pelvic tilt increased after botulinum toxin A injection to hamstring muscles in 10 CP patients with crouch gait. Care should be taken not to cause isolated hamstring weakness. As the hamstring is a hip extensor, its excessive weakness increases anterior pelvic tilt.

If knee flexion contracture is between 10 to 30 degrees, surgery is necessary in patients older than 10 years. Hamstring lengthening and, if necessary, posterior knee capsulotomy operations can be performed. Gradual correction with casting may be rarely necessary. No deformity has developed in femoral condyles (3).

Indications of hamstring lengthening
1. Popliteal angle is greater than 50° under anesthesia and knee flexion is greater than 20° while standing,
2. Fixed knee contracture is greater than 5°-10°,
3. Having difficulty sitting and standing without a wheelchair,
4. Disappearance of lumbar kyphosis while sitting with hamstring relaxation.

Semitendinosus, semimembranosus, and long head of the biceps femoris are knee flexors and hip extendors. Semitendinosus and semimembranosus lengthening may correct the popliteal angle separately by 10 to 15 degrees. Excessive hamstring lengthening should be avoided because it causes anterior pelvic tilt and stiff knee gait. If the biceps femoris is not lengthened intramuscularly, it may lead to tibial external rotation.

Should we use passive hamstring stretching?
Instead of long-term aggressive hamstring stretch exercises, functional stretching and relaxation methods can be more effective in relaxing the child’s tight muscles and whole body during play (22).

If fixed knee flexion contracture is greater than 30°, the distal ends of the femoral condyles may become flattened, disrupting the articular surface of the tibiofemoral joint. In this situation, distal femoral extension osteotomy is a better option than capsular release (3). Capsular release in the presence of flattened femoral condyles results in decreased slide/roll behavior of the tibiofemoral joint, turning the knee joint into a hinge joint rather than a sliding one around the condyles. Hamstring lengthening, patellar tendon plication, and distal tibial tubercle transfer may be performed in the same session after supracondylar osteotomy. Since distal
femoral extension will cause femoral shortening, the development of sciatic nerve palsy will be much rarer. Supracondylar closing wedge extension osteotomy of the femur is an effective and safe procedure for the correction of knee flexion contracture in adult patients with spastic diparesis. One advantage of this operation is femoral shortening and relief of neurovascular structures. Sciatic nerve neuropathy and vascular insufficiency are rare (9).

Temporary growth arrest of anterior femoral epiphysis is a new method used in the management of knee flexion contractures (9). This method should be used in patients around 13 years of age, with 5 to 20 degrees of flexion contracture. Genu recurvatum deformity develops in patients under 13 years of age and deformity correction is incomplete in patients older than 14 years.

Results and problems
Potential problems related to treatment include:

1. Recurrence of knee flexion deformity.
2. Increases in postoperative lumbar lordosis and anterior pelvic tilt should be avoided. If present, hip flexion contracture should also be corrected.
3. In the presence of quadriceps spasticity or if the hamstrings are too weak, stiff knee gait or genu recurvatum will ensue. Distal rectus femoris transfer will solve the problem.
5. Crouch gait may develop due to excessive triceps lengthening. The solution is ground reaction AFO usage.
6. Sciatic nerve lesion.

As a principle, the pelvis, hip, knee, and ankle should be assessed as a whole. Rotational deformities should be corrected initially. Muscle length should be balanced, fixed joint contractures should be corrected, and recurrence of fixed contractures should be avoided by using ground reaction orthoses.

HIP FLEXION CONTRACTURE

While the hip flexion contractures are more common in patients with diplegia and quadriplegia, they are relatively rare in hemiplegic patients. Crouch gait is mostly for the compensation of the knee flexion and ankle equinus (23).

Psoas muscle is the primary reason for the hip flexion contracture and is known to be associated with increased anterior pelvic tilt, crouch gait, hip instability and increased lumbar lordosis. In patients with cerebral palsy, the psoas is shorter and the maximum hip extension is lower compared to the control group (24).

To assess the presence of the contracture, a clinical examination using the Thomas and Staheli tests is required. Thomas test is performed, keeping the patient in the supine position; to correct the lumbar lordosis and fix the pelvis, and the other hip and knee are put in full flexion. The angle between the femur of the tested side and the examination table indicates the grade of the hip flexion contracture. In the Staheli test, the patient lies in the prone position and the hip is left outside the examination table. The hip of the examined side is put in passive extension until pelvis extension is observed (23).

The spasticity of the iliopsoas muscle causes an increase in the hip flexion in the stance phase. In the mid-stance phase, the hip turns into normal extension and at the end of the stance phase, the hip rapidly shifts to flexion to lift the lower extremity from the floor and enter the swing phase. In patients with a crouch gait, the hip is in prefixion at the end of the stance phase and the power generation from the iliopsoas is lost. In addition, the step length reduces as the contracture gets worse. In patients with hip flexion contracture, anterior pelvic tilt and increased lumbar lordosis are observed during walking. If the increased flexion observed in the hip does not result from the contracture but instead from the hamstring and gastrocnemius spasticity, the hip extension will improve following the lengthening of the hamstring and gastrocnemius. If contracture exists despite this, anterior pelvic tilt will persist following hip and knee surgery and the patient will bend forward during walking. Lengthening of the iliopsoas should be added to the surgical intervention to be performed in such a case. Release of the iliopsoas from the small trochanter causes unnecessary weakening of the hip flexors and worsens walking. It becomes difficult to climb stairs. The strength of the muscle is better preserved by psoas tenotomy performed at the pelvic brim (23, 25). The psoas tendon is identified and selectively sectioned from the iliacus muscle and the psoas is retracted into the intact iliacus muscle (26). No post-surgical immobilization is required; however the patients are not allowed to sit in the wheelchair where the hips would remain in flexion, to protect the hip extension (23).

On the other hand, proximal femoral derotation ostetomy may improve the dynamic psoas length, even though no psoas procedures is performed, by moving the lesser trochanter forward (24).

The same activity as the gastrocnemius-soleus activity observed during the plantar flexion knee extension couple also exists between the iliacus and the psoas. The same weakness as the soleus weakness that causes an increase in the forward progression of the tibia and thus crouch gait, is also observed in cases of iliopsoas tenotomy with a weakening the iliacus. As we know, the muscles covering double joints are affected more in cerebral paresis. The iliacus, just like the soleus, spans a single joint and is not affected by spasticity similar to its partners (gastrocnemius and psoas). While the iliacus muscle is involved in carrying forward the femur same as the psoas, it gets very weak after the tenotomy and reduces the hip flexor force at the end of the stance phase and at the beginning of the swing phase (27). Children with cerebral palsy very commonly develop a stiff knee gait pattern and most of them are being treated by distal rectus femoris transfer surgery. One of the reasons for the over-activity of rectus femoris is the posterior pelvic tilt associated with iliacus weakness and the effort by the rectus femoris to balance the pelvic tilt on the sagittal plane (28). We know that one of the causes of stiff knee walking is the hip flexor weakness. Just as in the achilles tenotomy on the ankle, the tenotomy of the iliopsoas common tendon at the hip needs to be paid attention to.

Conflict of interest: No conflict of interest was declared by the authors.

REFERENCES


28. Fox MD, Delp SL. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds, J Biomech 2010; 43: 1450-5. [CrossRef]